20 research outputs found

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    Design of controlled elastic and inelastic structures

    No full text
    One of the founders of structural control theory and its application in civil engineering, Professor Emeritus Tsu T. Soong, envisioned the development of the integral design of structures protected by active control devices. Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control. In his recent papers published jointly with some of the authors of this paper, Professor Soong developed design procedures for the entire structure using a design - redesign procedure applied to elastic systems. Such a procedure was developed as an extension of other work by his disciples. This paper summarizes some recent techniques that use traditional active control algorithms to derive the most suitable (optimal, stable) control force, which could then be implemented with a combination of active, passive and semi-active devices through a simple match or more sophisticated optimal procedures. Alternative design can address the behavior of structures using Liapunov stability criteria. This paper shows a unified procedure which can be applied to both elastic and inelastic structures. Although the implementation does not always preserve the optimal criteria, it is shown that the solutions are effective and practical for design of supplemental damping, stiffness enhancement or softening, and strengthening or weakenin
    corecore